A Testbed for Neural-Network Models Capable of Integrating Information in Time

نویسندگان

  • Stefano Zappacosta
  • Stefano Nolfi
  • Gianluca Baldassarre
چکیده

This paper presents a set of techniques that allow generating a class of testbeds that can be used to test recurrent neural networks’ capabilities of integrating information in time. In particular, the testbeds allow evaluating the capability of such models, and possibly other architectures and algorithms, of (a) categorizing different time series, (b) anticipating future signal levels on the basis of past ones, and (c) functioning robustly with respect to noise and other systematic random variations of the temporal and spatial properties of the input time series. The paper also presents a number of analysis tools that can be used to understand the functioning and organization of the dynamical internal representations that recurrent neural networks develop to acquire the aforementioned capabilities, including periodicity, repetitions, spikes, and levels and rates of change of input signals. The utility of the proposed testbeds is illustrated by testing and studying the capacity of Elman neural networks to predict and categorize different signals in two exemplary tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

متن کامل

Comparison of Efficiency for ‎Hydrological Models (AWBM & ‎SimHyd) and Neural Network (MLP & ‎RBF) in Rainfall–Runoff Simulation ‎(Case study: Bar Aryeh Watershed ‎‌-‌Neyshabur)‎

For suitable programming and management of water resources, access to perfect information from the discharge at the watershed outlet is essential. In most watersheds, the hydrometric station is not available; then, different models are used to simulate the discharge within watersheds without data. The selection of preferred model for rainfall- runoff simulation depends to the purpose of modelin...

متن کامل

Prediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence

Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....

متن کامل

Forecasting Gold Price Changes: Application of an Equipped Artificial Neural Network

The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...

متن کامل

The Application of Combined Fuzzy Clustering Model and Neural Networks to Measure Valuably of Bank Customers

Currently, acquisition of resources in banks is subject to attraction of the resources of banking customers. Meanwhile, the Bank’s valuable customers are one of the best resources to make profit for banks. Several different models are introduced for evaluation of profitability of the customers; but most of them are classical models and they are unable to evaluate the customers in complete and o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006